Emmanuel Junior Academy (DSAT)

MATHEMATICAL CALCULATION AND REPRESENTATION GUIDE

Our Mathematical Calculation and Representation Guide is adapted from the White Rose Maths calculation policy, which is a high-quality resource used in our school to support effective teaching and learning of the ambitious Primary Maths National Curriculum. Our guide focuses on ensuring that pupils learn the most appropriate and efficient methods of calculation at the right time.

A common approach to manipulatives, representations and methods of calculation ensures that there is clear progression for pupils through school. Methods and representations build on from the year before to ensure that pupils make incremental, small steps in their maths learning, leading to secure understanding.

Our Calculation and Representation Guide also supports teachers to make adaptations to their teaching when there are pupils working below Age Related Expectations. A clear and shared understanding representations and methods from lower down school (including KS1 where required), ensures that all teachers can consistently provide highquality teaching and learning for all pupils.

Throughout KS2, pupils are challenged to calculate using numbers of increasing size and complexity (including decimals). The representations and calculation methods in this guide support pupils to develop an understanding of and use the following methods effectively by the end of the year.

	By the end of the year, pupils will use these methods effectively to calculate...			
	Addition	Subtraction	Multiplication	Division
Year 3	Formal column addition	Formal column subtraction	Informal written methods of multiplication Short multiplication	Division as sharing with an exchange, using informal written methods.
Year 4 5	Formal column addition	Formal column subtraction	Short multiplication	Informal written methods of division, including remainders.
Year 6	Formal column addition	Formal column subtraction subtraction	Short multiplication Long multiplication	Short division with remainders.
		Long multiplication	Formal method of short division. Formal method of long division.	
Remainders as fractions				
or decimals.				

Please see the glossary of Key Terms and Examples at the end of this document for clarification and exemplifications of formal methods and layout expectations.

Addition

	Add 3 1-digit numbers	Pupils use known facts, such as number bonds to 10 and doubles to support them to add quickly. Pupils are exposed to a range of manipulatives that highlight bonds to 10 are effective when adding 1digit numbers.
$\begin{aligned} & n \\ & N \\ & \frac{1}{\pi} \\ & \underset{\sim}{\sim} \end{aligned}$	Add 1-digit and 2-digit numbers to 100 $38+5=43$	Pupils count on from the larger number when adding $2+1$ digit numbers. They also apply their knowledge of number bonds to add more efficiently e.g. $8+5=13$ so $38+5=43$ Hundred squares and straws can support children to find the number bond to 10.
$\begin{aligned} & \stackrel{m}{N} \\ & \stackrel{N}{\bar{©}} \\ & \underset{\sim}{\sim} \end{aligned}$	Add 2-digit and 2-digit numbers to 100 $38+23=61$	Children are encouraged to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient. Children also use a blank number line to count on to find the total. Pupils jump into multiples of 10 as they become more efficient. By the end of Year 2 pupils will use formal column addition including regrouping.

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Adding numbers with more than 4-digits

$$
104,328+61,731=166,059
$$

Add with up to 3 decimal places

(1)

Pupils use the column method of addition to add large numbers efficiently.

In column addition, pupils consistently record regrouped digits underneath the equals sign.

In Year 6, pupils explain why column addition may not be suitable for every calculation, and can make choices to use efficient mental methods.

Children have experience of adding decimals with a variety of decimal places. This includes putting this into context when adding money and other measures.

In column addition, pupils consistently record regrouped digits underneath the equals sign.

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Subtraction

Pupils experience
subtraction as partitioning
and reduction.
Partitioning: part-whole
models, bar models, ten
frames and number
shapes

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

land 2-digit numbers to 100

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Subtract numbers with up to 4 digits

${ }_{4}^{3} 4357$

- 2735

1622

$$
4,357-2,735=1,622
$$

Subtract numbers with more than 4 digits

$$
294,382-182,501=111,881
$$

Children write out the calculation alongside any concrete resources they can see links to the written column method.

Plain counters on a place value grid are also used to support learning.

In column subtraction, pupils consistently record exchanged digits on the top row of the calculation.

Children use the abstract, using the column method to subtract larger numbers.

In column subtraction, pupils consistently record exchanged digits on the top row of the calculation.

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Subtract with up to 3 decimal places

Pupils can represent subtraction calculations using place value counters and plain counters on a place value grid when subtracting decimals with 1,2 and 3 decimal places.

Children have experience of subtracting decimals with a variety of decimal places. This includes putting this into context when subtracting money and other measures.

In column subtraction, pupils consistently record exchanged digits on the top row of the calculation.

Multiplication

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Multiply 3-digit numbers by 1-digit numbers

Multiply 4-digit numbers by 1 digit numbers

$$
1,826 \times 3=5,478
$$

Pupils use Base 10 and place value counters to support understanding of the written method.

By the end of Year 4 pupils use short multiplication effectively.

In short multiplication, pupils consistently show regrouped digits below the equals sign.

Pupils continue to use the formal written method of short multiplication. Place value counters and charts are used to support the understanding of what happens when regrouping.

Pupils struggling to use their times table knowledge use multiplication grids so that they can focus on the written method.

In short multiplication, pupils consistently show regrouped digits below the equals sign.

Emmanuel Junior Academy Mathematical Calculation and Representation Guide
Pupils are exposed to and initially use the area model to help them to understand the size of numbers they are using.

Pupils use the grid method as an initial written method before moving on to the formal written multiplication method.

Pupils should efficiently use the formal written multiplication method by the end of Year 5.

In long multiplication, pupils consistently show regrouped digits below the equals sign.

Multiply 3-digit by 2-digit numbers

$234 \times 32=7,488$

\times	200	30	4
30	6,000	900	120
2	400	60	8

Pupils continue to use the area model to support their understanding of scale and size of numbers, Base 10 may be replaced with place value counters for efficiency.

Pupils to use the formal written method, seeing links with the grid method.

In long multiplication, pupils consistently show regrouped digits below the equals sign.

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Multiply 4-digit by 2-digit numbers

TTh	Th	H	T	O
	2	7	3	9
\times			2	8
2	1	9	1	2
5	4	7	8	0
7	6	6	9	2

$2,739 \times 28=76,692$

Pupils are confident in using the formal written method of long multiplication.

Multiplication grids can still provide support for pupils struggling with times tables to ensure they can focus on the use of the method.

In long multiplication, pupils consistently show regrouped digits below the equals sign.

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Divide 2-digits by 1-digit (regrouping)

$$
52 \div 4=13
$$

Divide 3-digits by 1 digit (grouping)

$$
856 \div 4=214
$$

Pupils use the short division method using grouping. Starting with the largest place value, they group by the divisor.

Place value or blank counters are used to support pupils understanding of grouping. This highlights remainders clearly.

Children can initially draw their own counters and group them to support the pictorial method.

Teachers use precise language to prevent misconceptions: 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?'

Pupils consistently exchange to the right and use superscript digits to show this.
Children continue to use grouping to support their understanding of short division when dividing a 3digit number by a 1-digit number.

Place value counters or plain counters are used on a place value grid to support this
understanding.

Pupils consistently exchange to the right and use superscript digits to show this.

Emmanuel Junior Academy Mathematical Calculation and Representation Guide

Divide multi-digits by 2-digits

		0	3	6
	12	4	${ }^{4} 3$	7_{2}

$$
7,335 \div 15=489
$$

15	30	45	60	75	90	105	120	135	150

Divide multi-digits by 2-digits (long division)

$$
432 \div 12=36
$$

$7,335 \div 15=489$

Divide multi-digits by 2-digits (Iong division)

$$
372 \div 15=24 \mathrm{r} 12
$$

$$
\begin{aligned}
& 1 \times 15=15 \\
& 2 \times 15=30 \\
& 3 \times 15=45 \\
& 4 \times 15=60 \\
& 5 \times 15=75 \\
& 10 \times 15=150
\end{aligned}
$$

Children begin to divide up to 4-digits by 2-digits using short multiplication.

Children write out multiples to support their calculations with larger remainders.

Pupils can identify where remainders should be presented as decimals or fractions, or whether the quotient should be rounded.

Pupils consistently exchange to the right and use superscript digits to show this.
Children divide by 2-digit numbers using long division.

Children write out multiples to support their calculations with larger remainders.

Children will also solve problems with remainders where the quotient can be rounded as appropriate.

Pupils consistently exchange to the right and use superscript digits to show this.
When a remainder is left at the end of a calculation, children can either leave it as a remainder or convert it to a fraction. They make decisions based on the context of the question.

Children answer questions where the quotient needs to be rounded according to the context.

Addend- a number to be added to another
Aggregation - combining two or more quantities or measures to find a total
Array - an ordered collection of coutners, cubes or other item in rows and columns
Augmentation- increasingly a quantity of measure by another quantity
Commutative - numbers can be added or multiplied in any order
Complement - in addition, a number and its complement make a total. e.g. 300 is a complement to 700 to make 1000.

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.
Difference - the numerical difference between two numbers is found by comparing the quantity in each group.
Dividend - in division, the number that is divided
Exchange - change a number or expression for another of equal value in subtraction and division
Factor - a number that multiplies with another to make a product
Minuend - a quantity or number from which another is subtracted
Multiplicand - in multiplication, a number to be multiplied by another
Partitioning - splitting a number into its component parts
Product - the result of multiplying one number by another
Quotient - the result of a division
Reduction - subtraction as take away
Regroup - change a number or expression for another of equal value in addition and multiplication
Remainder - the amount left over after a division when the divisor is not a factor of the dividend
Scaling - enlarging or reducing a number by a given amount, called the scale factor
Subitise - instantly recognise the number of objects in a small group without needing to count
Subtrahend - a number to be subtracted from another
Sum - the result of an addition
Total - the aggregate or the sum found by addition

Addition and subtraction

Short multiplication

Answer: 144
342×7 becomes

Answer: 2394
2741×6 becomes

Answer: 16446

Long multiplication

$$
\begin{aligned}
& 24 \times 16 \text { becomes } \\
& \\
& \\
& 2 \\
& 2
\end{aligned} 4
$$

Answer: 384

124×26 becomes

$$
\begin{aligned}
& 12 \\
& 124 \\
& \begin{array}{r}
\\
\times \quad 26 \\
\hline 2480
\end{array} \\
& \begin{array}{llll}
& \mathbf{7} & \mathbf{4} & \mathbf{4} \\
\hline \mathbf{3} & \mathbf{2} & \mathbf{2} & \mathbf{4} \\
\hline 1 & 1 & &
\end{array}
\end{aligned}
$$

Answer: 3224
124×26 becomes

$$
12
$$

$$
\begin{array}{lll}
1 & 2 & 4
\end{array}
$$

$$
\begin{array}{r}
\times 26 \\
\hline 744
\end{array}
$$

$$
\begin{array}{llll}
2 & 4 & 8 & 0 \\
\hline 3 & 2 & 2 & 4 \\
\hline 1 & 1 & &
\end{array}
$$

Answer: 3224

Short division

$98 \div 7$ becomes

Answer: 14
$432 \div 5$ becomes

$$
\begin{aligned}
& 5 \longdiv { 4 3 ^ { 3 } 2 }
\end{aligned}
$$

Answer: 86 remainder 2
$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

Long division

$$
\begin{aligned}
& 432 \div 15 \text { becomes } \\
& \begin{array}{llllll}
& & & 2 & 8 & \text { r } 12
\end{array} \\
& \begin{array}{lll}
3 & 0 & 0 \\
\hline 1 & 3 & 2
\end{array} \\
& \begin{array}{lll}
1 & 2 & 0 \\
\hline & 1 & 2
\end{array}
\end{aligned}
$$

Answer: 28 remainder 12
$432 \div 15$ becomes

1 | | 5 | 2 | 8 | |
| :--- | :--- | :--- | :--- | :--- |

$\frac{12}{15}=\frac{4}{5}$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

Answer: 28-8

